Post-frontal shallow convection observed in COMBLE:

Cold-air Outbreaks in the Marine Boundary Layer Experiment

Thanks to Christian Lackner, Branko Kosovic, Tim Juliano, Min Deng, Zach Lebo, Yishi Hu, Peng Wu, Mikhail Ovchinnikov

Preface

- COMBLE describes the atmospheric conditions and aerosol, cloud, and precipitation characteristics in the marine boundary layer during high-latitude cold-air outbreaks
- The marine CAO cloud regime is the product of surface fluxes, BL mixing & entrainment, aerosol, cloud and precipitation processes, and mesoscale circulations
- COMBLE provides a powerful modeling test bed for improving the representation of mixed-phase cloud processes in largeeddy simulations and large-scale models

- DL
- CEIL
- MPL
- MWR-2C
- LDIS
- TSI
- ECORE/SEBS
- AWS
- BBSS
 - MRR (U. Cologne)

Identification of marine Cold-Air Outbreaks

Dec 19

- Identification based on the following environmental conditions:
 - MCAO-index: $M = \theta_{SST} \theta_{850hPa} > 0 \text{ K}$
 - Wind speed: $|\vec{u}| > 10 \text{ kt}$
 - Wind direction must be onshore:
 - Between 250° and 30° at Andenes
 - Between 270° and 110° at Bear Island
- SST is taken ~10 km off the coast and ranges between 5 – 8 °C at Andenes during COMBLE
- Three hour running-means are applied to the atmospheric conditions; CAO events and gaps between CAO events shorter than 3 hours are filtered out

Composite vertical cloud structure

Frequency by altitude display of KAZR reflectivity and Doppler velocity at Andenes. From left to right, the red lines are the 10th percentile, the mean, and the 90th percentile

Example 1: 28-29 Mar 2020

Look for the poster by Tim Juliano et al on this case, showing 1 km WRF simulations

Example 2: 23-24 Feb 2020

The 40-day global SCREAM simulation produces a similar MCAO (see poster by Xue Zheng and YunYan Zhang)

Example 3: 13 Mar 2020

conditions at Andenes

This case is analyzed in the poster by Peng Wu and Mikhail Ovchinnikov

start	end	duration (hrs)	mean M (K)	mean wind speed (m/s)	mean wind dir (°)	mean T (°)	description
20/03/27 23Z	20/03/29 12Z	37	6.6	8.0	314	0.5	long-lived, trajectories via Fram Strait, echo tops 3-6 km
20/03/12 18Z	20/03/14 02Z	32	7.8	7.6	336	-0.9	extreme M, trajectories via Fram Strait, echo tops 4-5 km
20/02/22 21Z	20/02/24 13Z	40	2.3	7.6	297	2.4	complex trajectory, polar low over ANX, echo tops shallow (~2 km) or deep (~6 km)